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Abstract

Magnetic susceptibility data for praseodymium, neodymium,

gadolinium, holmium, and erbium phthalocyanines taken in the

temperature ranges 80-300 K or 4.2-300 K are reported. The a-

and r-interactions of the pyrrolic nitrogen ligand with the

praseodymium, neodymium, holmium, and erbium f-orbitals were

obtained from angular overlap model ligand-field calculations

including the full ground-state manifold. The position of the

pyrrolic nitrogen ligand in the metallic two-dimensional

spectrochemical series is reported. The results show that the

pyrrolic nitrogen is a weak a-donor and a moderate w-donor

ligand. The cross-term AOM parameter e,o is necessary in order

to get good fits.
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Introduction

Following the synthesis of the lanthanide phthalocyanines
i

much attention has been focussed on their chemical and physical

properties such as spectroscopic characterization2 , electrical

resistivities,3' 2(n) thermal stability,4 magnetic proper-

ties, , 2(g), 2(j),2(C),2(m),2(r),3(g) electrochro-

mism 2( f) ,6,2( i) ,2(1) 2(o),2(p) ,2(q ) solubility, 7 electrocrystallization, 2(i)

and X-ray structures.20'),8 However, no theoretical models have

been applied for the explanation of the energetic effects of the

ligands upon the lanthanide ion. The angular overlap model

(AOM)9 permits the quantitative determination of the relative

magnitude and the sign of the a- and r-interactions of ligands

with metal ions. This feature of AOM brings the concept of

functional groups to ligand-field theory.

Because the AOM is a parametric model, it is necessary to

adjust certain parameters to experimental values. Absorption

spectroscopy (UV-Vis-IR) provides an experimental tool to obtain

the a and r interactions between ligands and metals. They can be

calculated from the transition energies, and the interpretation

accomplished using the AOM. However, in the case of lanthanide

phthalocyanines, such studies are difficult for two reasons.

First, the f-f transitions are parity forbidden and herefore of

weak intensity. Secondly, the r - * bands of the macrocycle

phthalocyanine are intense, and obscure the weaker f-f bands

which are required for the analysis. This ubstacle may be

overcome with help of magnetic susceptibility measurements.
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In this work, magnetic susceptibility measurements (80-300 K

or 4.2-300 K) were used to determine the AOM parameters of

praseodymium, neodymium, holmium, and erbium phthalocyanines.

Also, the positions of the compounds in the metallic two-

dimensional spectrochemical series were determined.

Experimental Section

Synthesis. The lanthanide phthalocyanines, H(Pc)Ln(Pc) [Pc

= dianion phthalocyaninato, Ln = Pr, Nd, Gd, Ho, and Er], were

prepared by a modification of the synthesis described in the

literature2(a) by reacting an excess of 1,2-dicyanobenzene with

the appropriate lanthanide acetate, and further chromatographic

separation and purification. The modification consisted of

subliming, before the chromatographic separation, under vacuum at

3000C overnight several times (2-4) until no more sublimated

material was collected from the cold finger. The sublimation

eliminates most of the 1,2-dicyanobenzene that did not react, and

its decomposition products. The dark blue phthalocyanines

collected from the chromatographic column were used in this

study. The purity of the samples was checked by UV-Vis, IR, and

EPR spectra.

Magnetic Susceptibility Measurements. Temperature-dependent

data used in the fittings were collected with a Faraday balance

in the 80-300 K range, and with a vibrating sample magnetometer

in the 4.2-80 K range. The instruments were calibrated using a

standard of Hg[Co(SCN)4]. Diamagnetic corrections were

calculated using Pascal's constants.
10
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Results and Discussion

Curie-Weiss Fits. Curie-Weiss fits of the magnetic

susceptibility data yielded the best-fit parameters given in

Table 1. The Weiss constants for praseodymium and neodymium

phthalocyanines are rather large compared with the values

obtained for gadolinium, holmium, and erbium phthalocyanines,

which are in closer agreement with the Curie law. There are

three possible explanations account for the differences; either

the lanthanide ions show cooperative phenomena, or the

temperature independent paramagnetism (TIP) is not negligible, or

there are accessible low-lying magnetic states. The negative

sign for the Weiss constants suggests an antiferromagnetic

exchange coupling; however, in such cases it has been observed

that the Neel temperature, TN, is approximately equal to the

negative of the Weiss constant (e = T) .11 That means the

magnetic ordering should be observed near 110 and 61 K for

praseodymium and neodymium phthalocyanines, respectively.

Magnetic susceptibility measurements collected down to 4.2 K

however show no indication of exchange coupling, thus ruling out

cooperative magnetic phenomena.

TIP arises from the mixture into the ground state of

thermally non-populated, yet low lying excited states.12 Of the

five lanthanide ions considered in this study, praseodymium and

neodymium are the ones with the lowest lying first excited states

(see Table 1), and hence the ones that more likely could show

appreciable TIP.
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Even after making the corrections to account for the TIP,1a

the corrected Weiss constants are still different from the free-

ion values, which is indicative of the influence of the ligand-

field. It is important to remember that even ligand-field

effects in lanthanide compounds represent only small

perturbations from the point of view of electronic spectroscopy.

The states that arise are the essence of their magnetic

properties.

Angular Overlap Model Pits. The AOM calculations involved

the diagonalization of the complete ground state manifold of the

free-ion basis under the ligand-field potential, and a subsequent

computation of magnetic susceptibilities by perturbation theory

within the Van Vleck equation using Racah's irreducible tensor

operator techniques.
13

The theoretically calculated magnetic susceptibility was fit

to the experimental data by using the nonlinear least-squares

fitting routines SIMPLEX,14 or GRADX.15 Similar results were

obtained independently using both routines. The criterion of

best-fit was the minimization of the function:

F = E (X| bsd - caLcd ) 2/(X iobd) 2

Since the energy gaps between the free-ion ground states and

their first excited states of praseodymium, neodymium, holmium,

and erbium ions (see Table 1) are large compared with kT (= 205

cm"I at room temperature), the ground-state manifold



6

wavefunctions should suffice to give an excellent account of the

susceptibilities. It has been found such approximation has a

negligible influence on the magnetic moments, and will lead to

errors of less than 0.1 B.M.
16

The ground-state energy splittings obtained from the

diagonalization of the ligand-field energy matrix for

praseodymium, neodymium, holmium, and erbium phthalocyanines are

344, 483, 2200, and 2940 cm', respectively. The energy

splittings of praseodymium and neodymium phthalocyanines are of

the same order of magnitude as the thermal energy at room

temperature, and therefore, all the levels are expected to be

populated at high temperatures. By contrast, the energy

splittings for holmium and erbium phthalocyanines are more than

one order of magnitude larger than kT, so only the low lying

energy levels are expected to be appreciably populated.

The low energy transitions lie in the far-Ir or IR range of

the spectrum, and the ligand-field parameters could not be fit

using the experimental data from the far-IR or IR spectra of

lanthanide phthalocyanines because the f-f transitions are parity

forbidden, therefore of very weak intensity, and they could not

be detected from the spectra.

The AOM best-fit parameters are listed in Table 2. It was

not possible to get good fittings when the cross-term parameter

was not included. This is not an unexpected result since it is

generally found in chelate compounds.17 The cross-term parameter

represents the degree of admixture between the a- and r-orbitals

in the nitrogen atoms, since in the lanthanide phthalocyanines
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the nitrogen a-orbital is not directly pointing towards the

lanthanide ion. This is the so-called misdirected valency

contribution to the ligand-field potential, and it was taken into

consideration by adding the extra terms Y21Y4, and Y6 in the

ligand-field spherical harmonics expansion.

It was possible to get good fittings with slightly different

sets of AOM parameters. This was particularly noticeable in the

case of praseodymium phthalocyanine; e. may change within the

107-127 cm"I range; e. in the 44-25 cm"I range, and e,, in the 10-

25 cm"1 range. The fits in this region were very good (the error

was less than 3%).

Compared with the behavior observed during the fitting of

praseodymium phthalocyanine, in the case of neodymium, holmium

and erbium phthalocyanines the range of values of AOM parameters

for which a good fit is possible is narrower. The quality of the

fitting worsens considerably for values outside the best-fit

range. Also, no clear correlation among the AOM parameters

could be detected. These observations support the idea of unique

fittings.

When the parameter e, was included, the quality of fits fell

off very rapidly indeed for e, = 0, and the assumption that the

i-bonding between nitrogen and lanthanide in the plane of the sp2

hybrid is negligible was apparently justified. The final

situation was that there exists a narrow region in polyparameter

space in which all the AOM parameters fit well, and going outside

that region even a small way reduced the quality of the fit

significantly.
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The best-fit values for e. are rather small compared to the

values usually obtained for transition metal ions (on the order

of a few thousand wavenumbers). This may be considered as a

reflection of the screening effect that occurs in the lanthanide

series, and of the weak covalency of the Ln-N bond. The

parameter e. did not affect the magnetic susceptibility very much

as this affected mainly the gross splitting in the ground

manifold, i.e., spectral properties, with the lower levels being

populated to a greater extent, and those populated levels

determine the magnetic properties for the most part.

Positive e.'s imply r donation from the ligand to metal, and

negative ones r acceptor properties of the ligand. From the

fittings, it was found e. to be greater than the ideal value of

0.25 e, predicted from simpler approaches. The fact that e,

turned out to be greater than the ideal value is indicative of a

relatively strong i-interaction. The donor properties of the

pyrrolic nitrogen atom seems likely even given a delocalized

system such as exists here. In the pyrrole ring, the

delocalization in the imine group seems to be quite small, and

little disruption is caused by i-donation.

The value el of zero shows that the electrons in the sp
2

hybrid bonding the imine nitrogen are not in a position to

interact with the lanthanide ions, confirming the initial

supposition.

Figure 1 shows the position of praseodymium, neodymion.

holmium, and erbium phthalocyanines in the metallic two-

dimensional spectrochemical series. The parameters e. and e.
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increase somewhat as the lanthanide ionic radii decrease. The

trends may be rationalized considering the Ln-N bond lengths (and

the Pc-Pc intraring separation distances) decrease, increasing

the orbital overlap, and strengthening the bonds.

Conclusions

The advantage of using a series of closely related

lanthanide phthalocyanines is that such a study permits the

determination of trends in the AOM parameters, and these may be

related to chemical features of the complexes. It has been

assumed by various authors that the AOM parameters are

transferable from one compound to another. The order observed

for the a-bonding is e, (Pr) < ea (Nd) < e. (Ho) < e. (Er), and

the same trend is observed for i-bonding. This clearly indicates

a direct relationship between the a- and r-bond strengths, and

the lanthanide-nitrogen bond distances. The effect leads to the

conclusion that no discussion of transferability of the AOM

parameters is possible unless the bond length distances are

known.

From this analysis, it has been found that the AOM

parameters may be associated with local interactions of the

lanthanide ion and its individual ligands. Us of the AOM has

allowed the introduction, explicitly, of the notion of chemical

functional groups to ligand-field theory. The AOM e. and e,

parameters show that the pyrrolic nitrogen atom acts as a weak a-

donor and a moderate i-donor ligand. The position of the

praseodymium, neodymium, holmium, and erbium phthalocyanines in



10

the metallic two-dimensional spectrochemical series has been

determined for the first time (Figure 1).
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Figure Caption

Figure 1. Position of lanthanide phthalocyanines in the metallic

two-dimensional spectrochemical series.
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Table 1. Curie-Weiss best-fit parameters of lanthanide

phthalocyanines, and the separation energy between the ground

state and the first excited state of the free-ion lanthanides.

Compound C(Emu K mole-') 9 (K) AE (cm )

H(Pc)Pr(Pc) 1.90 -110 2,150

H(Pc)Nd(Pc) 1.17 -61 1,900

H(Pc)Gd(Pc) 6.61 6 30,000

H(Pc)Ho(Pc) 13.00 0 5,200

H(Pc)Er(Pc) 8.83 4 6,500

Table 2. AOM best-fit parameters in wavenumbers, and percent

errors between the theoretically calculated magnetic

susceptibilities and the experimental data.

Parameter H(Pc)Pr(Pc) H(Pc)Nd(Pc) H(Pc)Ho(Pc) H(Pc)Er(Pc)

e. 117 126 153 155

e. 33 41 49 72

e1, 10 10 12 2

er/e, 0.28 0.33 0.32 0.46

% Error 2.8 2.0 0.8 3.2
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